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Camera-Shooting Resilient Watermarking on
Image Instance Level

Mingjin He, Bingwen Feng™, Yizhi Guo, Jian Weng ",

Abstract— Capturing displayed images using portable cameras
has become familiar among multimedia pirates, necessitating the
urgent requirement of camera-shooting resilient watermarking
schemes. In this paper, we consider the stealers who only record
parts of images, and propose a robust watermarking scheme at
the image instance level. This scheme consists of an encoding end,
a noise layer, and a decoding end. The encoding end first selects
specific watermarking regions associated with segmented image
instances. Afterwards, an encoder is employed to embed water-
mark sequences into the RGB color model of these watermarking
regions. At last, templates are embedded to product the final
watermarked images. Specifically, our suggested template-based
resynchronization comprises a template embedding module at the
encoding end and a geometric correction module at the decoding
end. The former embeds templates by a correlation-aware multi-
plicative spread spectrum with an adaptive amplitude, while the
latter learns a calibrator to estimate the perspective projection.
Experiments on both simulation and real-world scenarios support
that the proposed scheme effectively resists camera-shooting
attacks with various shooting conditions, regardless of whether
the entire displayed images have been captured.

Index Terms— Robust watermarking, camera-shooting attack,
image instance, template, resynchronization.

I. INTRODUCTION

HE privacy of multimedia data has attracted more and
more attention. It calls for that the content of multimedia
data should not be transmitted or distributed illegally. Digital
watermarking is a promising technique to track down mul-
timedia pirates. Malicious users may use removable storage
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Fig. 1. Demonstration of camera-shooting attacks. In a) the attacker captures
the entire image, while in b) he only captures a part of the image he is
interested in.

devices, email, etc., to steal images. In this case, traditional
robust watermarking would be powerful to trace the leak
source. It can be designed to resist common image process-
ing [1], [2], [3] or geometric distortions [4], [S], [6] so that the
embedded watermark in the stolen images cannot be erased.
However, advanced stealers may use portable cameras, e.g.,
smart phones, to capture displayed multimedia content without
leaving any traces. This attack type, commonly referred to
as camera-shooting attacks, is demonstrated in Fig. 1. Due
to their complexity, simulating these attacks is challenging,
making them difficult to effectively address using traditional
robust watermarking techniques. Designing a camera-shooting
resilient watermarking scheme remains an open problem.

Typically, robustness against camera-shooting attacks
could be achieved by embedding region selection and
template/pattern-based synchronization. Fang et al. [7] design
intensity-based SIFT to locate embedding regions, and use
small-size templates to synchronize watermark sequences. In a
subsequent study [8], they design an autocorrelated watermark
pattern for precise localization of watermarks in underpaint-
ing documents. Alternatively, watermark sequences can be
encoded into rotationally orthogonal sinusoidal patterns [9]
or directed periodic patterns [10] to facilitate synchroniza-
tion. In [11], watermark regions are located by enhanced
keypoints. An optimization framework is further suggested
to unify keypoint enhancement and watermark embedding.
Mareen et al. [12] explore the secondary watermark signal
created during the compression of watermarked videos, which
exhibits high resistance to camcording attacks. While these
schemes use traditional robust watermarking skills to counter
camera-shooting attacks, the processing of camera shooting
remains to be too complex to quantify [7], [8]. Further,
the watermark extraction may suffer from various attacks in
practice, which is difficult to be predicted and handled by
handcrafted modules [13].
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With the vigorous development of deep learning techniques,
many schemes aim to learn robust watermarking with trainable
neural networks. A two-stage extraction network is intro-
duced in [14] to realize camera-shooting resilience. In [15],
a comprehensive dataset of camera-display paired images
is manually collected to learn the corresponding robust-
ness. However, the achieved robustness is device-specific,
and degrades significantly when confronted with another
device. General camera-shooting robustness can be achieved
by designing a noise layer that simulates the camera-shooting
distortions [16], [17], [18], [19], [20], [21]. Jia et al. [18] refine
the noise layer by dividing the distortions into camera shooting
and environmental components, which better fits the actual
shooting scenario. Fang et al. [19] suggest that including only
the most influenced distortions in the noise layer suffices to
reach strong robustness. Cao et al. [20] design dense block
feature maps across different scales to replicate photometric
and radiometric effects. Different from these embedding meth-
ods, TERA [21] superimposes two complementary message
templates onto alternately displayed frames, and suggests
an attention guided extraction network to meet robustness
requirements. These learning-based approaches have achieved
impressive performances. However, they primarily treat the
camera-shooting attacks shown in Fig. 1(a), where the entire
watermarked image is accessible. In reality, stealers may only
record the region he is interested in, as shown in Fig. 1(b)
Additionally, sometimes it would be difficult to capture an
entire image from a vast display-screen. Most of these schemes
would fail in such situation. It is because locating and syn-
chronizing watermarking regions in many schemes relies on
the visible markers on the watermarked images, which would
not be captured by the stealers. Furthermore, the watermark
sequences embedded in the entire image could not survive
after a large area of cropping.

The key issues in designing a watermarking scheme resistant
to both types of camera-shooting attacks shown in Fig. 1
include robustness, resynchronization, awareness of region of
interest, high image quality, and adequate capacity. These
issues will be delved in Section III. In this paper, we propose
a watermarking network on image instances to address these
issues. Watermark embedding and extraction in the scheme
are only performed in the watermarking regions associated
with image instances. The RGB color model is employed for
watermark embedding following previous work such as [16],
[17], [18], [19], and [21]. Furthermore, a template-based resyn-
chronization is employed to address the perspective projection
during camera shooting. The main contributions of this paper
are as follows:

1) An instance-level watermarking method is proposed.
The selected watermarking region coincides with the
region of interest, meanwhile satisfying the area require-
ment for the watermark embedding. As a result, it can
well resist camera-shooting attacks on local region.

2) A template-based resynchronization method is proposed.
Templates are carefully embedded with an adaptive
amplitude. Furthermore, a learning-based calibrator is
employed to estimate the perspective projection. It can
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accurately resynchronize the watermarking region with-
out the aid of visible markers.

3) A series of experiments on both simulated distortions
and real-world scenarios are conducted. Experimental
results support the robustness of the proposed method
on real-world camera shooting attacks.

II. RELATED WORK: LEARNING-BASED ROBUST
WATERMARKING

In recent years, learning-based robust watermarking has
been widely studied to resist various distortions.

Common signal processing including noising, blurring,
JPEG compression, etc., frequently arises during the acqui-
sition and transmission of images. Thus the robustness on this
type of distortions is essential. Inserting a noise layer between
the encoder and decoder during training has been widely
accepted as the most powerful way to improve robustness [16],
[17], [18], [19], [20], [21], [22], [23], [24]. Wang et al. [25]
further design an adaptor to balance robustness and impercep-
tibility. Among these distortions, JPEG compression poses a
particular challenge due to its non-differentiability. To address
this, various schemes have been proposed that utilize differen-
tiable approximations [22], [24], [26], [27]. Zhang et al. [27]
suggest a forward attack simulation layer to simulate JPEG
compression as well as other non-differentiable or black-box
distortions. We adopt this method in our scheme due to its
simplicity and outstanding performance.

Geometric distortions incur desynchronization in water-
mark information, which behave quite differently from
common signal processing. To address this, some schemes
fit a quadrilateral into the convex hull of captured images
and then twist it back to original shape [16], [18], [19],
[20]. Jia et al. [28] impose rectangular data matrices as a
watermark sequence and suggest a localization network to help
estimate and inverse the perspective transformation. However,
this locating method appears vulnerable to JPEG compression
and motion blur. In the proposed scheme, we exploit the
robust template embedding in traditional watermarking, and
suggest a template-based resynchronization method to enhance
robustness on geometric distortions.

III. KEY ISSUES IN DESIGN

As depicted in Fig. 1, a stealer could capture either the entire
image or a part he is interested in. To ensure successful water-
mark extraction in either case, the designed watermarking
scheme must possess the following essential characteristics:

A. Robustness on various distortions.

The camera-shooting process involves digital-to-analog and
analog-to-digital conversions in complex environments. This
incurs various distortions such as noising, blurring, resam-
pling, color and light changing, compression, and so on [16],
[18], and [20]. The watermarking scheme has to resist these
distortions, as well as their random combinations.
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Fig. 2. Pipeline of the proposed method.

B. Automatic Resynchronizing

Different shooting angles, distances, and other factors can
introduce geometric distortions like perspective projections
and cropping in captured images [7], [8]. These geometric
distortions will bring synchronization errors on the embedded
watermark sequences. As a result, the watermarking scheme
must have the ability to automatically resynchronize water-
marking regions.

C. Awareness of Region of Interest (Rol)

If a stealer only captures specific areas of images he is
interested in, watermark information in other regions will be
excluded. Consequently, it is crucial to concentrate watermark
information in the regions of interest to increase its survival
rate in captured images.

D. High Quality of Watermarked Image

The quality of watermarked images should be sufficient
for normal applications. Furthermore, the imperceptibility of
the embedded watermark can also help evade the stealer’s
attention, otherwise he would skate over the watermarking
region.

E. Adequate Capacity

The length of the watermark sequences to be embedded
should be sufficient to carry tracking information.

IV. PROPOSED METHOD

A learning-based watermarking network is presented herein
to fulfill all the aforementioned requirements. Drawing inspi-
ration from work in [16], [17], [18], [19], [20], and [21],
we use adversarial learning with a noise layer to obtain
robustness on various distortions. Additionally, a template-
based geometric correction method is suggested to facilitate
automatic resynchronization. To ensure awareness of region
of interest, we embed watermark sequences at the instance
level. At last, the loss functions are carefully designed to
balance imperceptibility and capacity. The framework of the
proposed scheme is illustrated in Fig. 2. It can be partitioned

into the encoding end, noise layer, and decoding end. Detailed
descriptions of these components are provided in subsequent
subsections.

A. Encoding End

The encoding end embeds a watermark sequence m €
{0, 1)1 into a host image I. € [0, 1]>*%*/ by using the
following steps:

1) Given host image I, the watermarking regions are first
selected by the region selection module. It generates
several binary mask M e {0, 1}fnxtw - where a value
1 indicates the corresponding pixel is selected for water-
marking.

The watermark encoding module then embeds m into
the host image guided by M}. It outputs a locally
watermarked image lioca € [0, 113%>tw - where only
the selected regions undergo modifications to carry
watermark information.

At last, the template embedding module embeds tem-
plates at prefix points in /ljoca to provide a reference
for the watermark resynchronization. It gives the final
watermarked image Iyq € [0, 113>t

2)

3)

The following are the implementation details of each module.
1) Region Selection Module: This module selects water-
marking regions that coincide with Rols. We utilize an
off-the-shelf Mask R-CNN [29] to identify and segment Rols
within the image. This method builds upon Faster R-CNN [30]
by adding a branch for predicting segmentation masks on each
Rol. It is worth noting that while there are numerous instance
segmentation methods available, we have chosen a relatively
straightforward approach one the sake of convenience.

Mask R-CNN segments the host image to give several
candidate masks M1, M, - -- that corresponded to each Rol.
Suppose only the first ny; candidate Rols are required to be
protected, where the value of nj, is determined according to
practical applications. Ideally, each of them should carry an
entire watermark sequence independently. However, embed-
ding a large watermark sequence into a small region could be
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Fig. 3. Demonstration of watermarking region selection.

difficult. As a result, M; should extend to neighboring regions
if it is smaller than a threshold t,,. This is achieved as follows.

1) Start with the smallest M; that has not been covered by
any watermarking region. Set it as the prime watermark-
ing region M = M;.

2) Goto Step 3 if the area of M; satisfies |M;| < tp,
otherwise goto Step 6.

3) Find a mask

. /
argmlnM; adjacent to M; Mj

M;  satisfying  M; =

and update the

watermarking region as M = M} U M;.

4) Goto Step 2 if M; # &, otherwise goto Step 5.

5) Find a rectangle R centered at M that satisfies
IRNI.| = 7y, and update the watermarking region
by M* = RN I.. Goto Step 6. Note that if M; lies
close to the boundary, not all sections of the rectangle
contain image data. Consequently, only the section of
the rectangle that contains image data is considered as
the effective region.

6) Output M as an acceptable watermarking region, and
goto Step 1 to process the next region, until all the nys
regions have been processed.

Figure 3 demonstrates an example of watermarking region
selection. Initially, Mask R-CNN detected three potential
regions as candidates. We set ny; = 3, indicating that all of
them need to be watermarked. The middle instance region
is smaller than the threshold, therefore it is merged with the
adjacent left one. Similarly, the right instance region is not
sufficiently large. Given the absence of any other suitable
instance region, it is expanded to encompass a rectangular area.
Finally, this refinement process results in two watermarking
regions.

Following the above procedure we obtain several water-
marking region M}, M5, --- € {0, l}’hxzw. Each of them is a
binary mask, where value 1 indicates the corresponding pixel
falls within the region, and O otherwise. These masks are then
used to guide the watermark embedding.

2) Watermark Encoding Module: The encoding module
treats one watermarking region each time. For the i-th region
M}, the encoding module first embeds the watermark sequence
m into the host image /. to produce a temporary watermarked
image Iy, € [0, 113%>lw Then pixels in /. covered by M are
replaced with those in Iy, to get the instance-level watermarked
image [iocal,i € [0, 113%>hw associated with M. Repeating
the above processing can give a set of fjocal, 1> llocal,2, * - * » €ach
of which only has watermark sequences in one watermarking
region. Finally, by replacing each M in I with its correspond-
ing liocal,i, @ locally watermarked image Ijoc. is obtained,
where all the watermarking regions having carried watermark
sequences.
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We use an encoder with a residual-dense architecture similar
to SteganoGAN [31] to generate Iyp. It receives I. and m as
the inputs. Note that, in order to provide adequate resolution
for the image instances, the host image is first cropped if its
background area is over large.

The encoder begins with extracting shallow features of I,
using a convolution layer. To ensure that the complete water-
mark sequence is accessible across all latent representations,
we spatially replicate m and concatenate it with the shallow
features. This operation enhances robustness against common
signal processing and cropping. Then, through several convo-
lutional layers, a residual map with m having been embedded
in it is generated. By combining it with the host image
and applying a sigmoid function, we obtain the temporary
watermarked image /ip.

In addition, we introduce PatchGAN [32] as the discrimi-
nator for adversarial training. This could improve the visual
quality of the generated watermarked images.

3) Template Embedding Module: To allow the captured
watermarked image having a reference for the watermark
resynchronization, templates are embedded at prefixed n,
points around each M[.* in ljocq1. After that, we obtain the final
watermarked image Iyq € [0, 13>k,

The template energy and watermarked image quality should
be carefully balanced. We employ correlation-aware multi-
plicative spread spectrum (CMSS) [33] to embed templates.
Firstly, a 7 x 7 sized pattern T is generated by randomly
selecting each element from a binary set {—1,+1} with
equal probability. This pattern is then embedded into the
coefficient blocks beginning at points pi, p2, - -+ , Pn,,- We use
the correlation to detect the existence of templates, defined as

2= (XU j7 % Tl j1) ()
ij

where X denotes a coefficient block. To guarantee reliable
template detection, the template energy is determined such
that the absolute correlation |z| calculated by the coefficient
block containing the template is p times greater than those
calculated by the blocks without the template. The template
embedding procedure is as follows.

1) Shift the host image so that M is located at the center
of the polygon formed by p1,p2, -, Pn,-

2) The cb channel of Ycber color space is employed to
embed template, because it is experimentally not sensi-
tive to the modification. Convert the color space of the
host image from RGB to Ycbcr, then apply Haar wavelet
transform to the cb channel of the host image, and use
the LL subband as the cover X to embed templates.

3) Use a 7x7 sized window to scan X in a zigzag order, and
measure the correlation between 7 and each obtained
coefficient block X. Denote the result as z;. Then, the
correlation threshold of template embedding is defined
as:

t=px ml?X(|Zk|) 2

Recall that p controls the template energy, and is exper-
imentally set with 2.
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4) For the k-th coefficient block X, whose top left corner
is pp,0 = 1,---,n,. Firstly, calculate the correlation
between T and X, saying zx. Then the pattern T is
embedded according to the sign of z, formed as:

. Xili, j1x (A +onTli, j) 1fzx =0
Yeli, jl1= .
ifzx <0

3)

Xili, j1x (1 —a2T[i, j1)

where the amplitudes o and oy are set so that

(1 +ada +201 > (Xuli jP) = 1
iJ

4)
1+ D)z =202 Y (Xalii j1?) = 1

i,j

5) Use the LL subband that has been embedded with
templates to reconstruct the c¢b channel, and convert the
color space of the host image to RGB again.

6) Shift the host image to the original location.

B. Noise Layer

We insert a noise layer between the encoding and decoding
ends to simulate the perturbations that may incurred by camera
shooting. The perturbations and their parameters are set as
follows:

o Scaling. We randomly scale the watermarked image Iyq
with a scaling factor in [0.5, 2]. After that, the scaled
image is resized to its original size.

o Blurring. Both defocusing and motion blurring are con-
sidered. We use Gaussian blur to filter Iyq with kernel
size varying in {3, 5,7} and the standard deviation ran-
domly sampled between 1 and 3 for defocusing blurring.
To simulate motion blurring, we apply a random angle
from O to 27 and a motion blur kernel of size ranging
from 3 to 7. During training, we randomly apply Gaussian
blur, motion blur, and a combination of them for iterative
training.

« Color transformation. We use the simulation proposed
by [28], formed as:

iwd = (1-0+fcon) X (de+fcul)+fbri )

where I~wd is the distorted image, feon, feor and fp.; are
the offsets of contrast, color, and brightness respectively.
They are set as feon, € [—0.3,0.3], feor € [—0.1,0.1],
and fp,; € [—0.3,0.3] during training.

« Noising. We add either Gaussian noise or random noise
to Iyq with a probability of 50% for each type of noise.
The mean of the Gaussian noise is set to 0, while the
standard deviation is uniformly sampled in [0, 0.02]. The
range of the random noise is set between [—0.1, 0.1].

+« JPEG compression. we use the differentiable approxi-
mation proposed by [27] to simulate JPEG compression.
The quality factor is sampled uniformly within [50, 100].

« Perspective warping. To sample a homography, we ran-
domly sample the perspective scale within [0, 0.2] to
perturb the four corner locations of the image.
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After applying all the above perturbations, the pixel values
of the distorted image are clipped to [0, 1]. These distorted
images are used in the adversarial training to gain robustness
on the corresponding distortions.

C. Decoding End

The goal of the decoding end is to recover the embed-
ded watermark sequences from the received image Iya €
[0, 1]3*/n*lw wwhich has suffered from various distortions. Note
that sometimes l~h #* 1y, l~w # I, due to geometric distortions.
The decoding procedure is as follows.

1) Use the geometric correction module to geometrically
correct Iq with the aid of prefixed templates, yielding
a geometrically corrected image wd.

2) Use the region detecting module to detect and clip each
watermarked region floeal,i.

3) The watermark decoding module takes flocal’i as input
and outputs the extracted watermark sequence m.

Each module is detailed as follows.

1) Geometric Correction Module: This module first detects
the embedded templates in the received image Iwa, then uses
a calibrator to inverse the perspective projection.

Similarly to the template embedding module, Iyq is first
converted to Ycber color space. The LL subband of Haar
wavelet transformed cb channel, denoted as f(, is then used
to detect the embedded templates. It is scanned in a zigzag
pattern with a 7 x 7 sized window to calculate a location
probability map (LPM) ip by using:

Ipli, j1=|XIi, j1* x Tli, j] (6)

where X is the scanned coefficient block. This LPM reflects
the probability of the locations of each template.

In addition to the above LPM, another reference LPM I},
is generated to estimate the homography with the original
template locations. This reference LPM is calculated by using
an ideal image, one that is free from any geometrical attacks.
Further, the detection of its template should remain unaffected
by the content of the image itself. Therefore, we embed the
template to an image with pixel values all equal to 1 following
the method outlined in Section IV-A.3. This constructed image
serves as the ideal image to calculate Ip. Then both fp and I,
are fed into a calibrator to estimate the homography between
them. Subsequently, we inverse the perspective projection with
the estimated homography, yielding a geometrically corrected
image fwd.

We retrain the geometric correction network suggested in
DHN [34] as the calibrator. It accepts the concatenated I, ||/,
as input and learns to estimate the offsets between the detected
templates. Its training strategy is stated in Section IV-D.2.
We have tried other methods such as spatial transformer
network (STN) for perspective projection correction on the
received image. However, these attempts have not been suc-
cessful due to the diversity of image contents.

2) Region Detecting Module: This module is similar to the
region selection module described in IV-A.1. Upon acquiring
multiple watermarking regions M, 1\;[;,~-~, each of them
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is expanded to the smallest rectangle region that covers
it. These expanded regions subsequently serve as the input
1]0031,1, flocal,L"' for the subsequent watermark decoding
module.

3) Watermark Decoding Module: Each time the watermark
decoding module inputs one flocal‘,- into the decoder to extract
the embedded watermark sequence. Note that some regions
may be not used to carry watermark information. As a result,
only those regions with extraction accuracies larger than 60%
are designated as watermarked.

In order to focus more attention on regions where features
can be accurately extracted, we adopt an attention-guided
extraction network similar to that in [21] as the decoder.
Additionally, a global average pooling layer and two fully
connected layers are incorporated near the output, enabling
the decoder to accommodate input images of different sizes.

D. Training Strategy and Loss Function

There are four networks that require training, an encoder,
a decoder, the corresponding discriminator, and a calibrator.
We do not train them simultaneously due to their competing
goals. Instead, the calibrator is trained separately from the
other networks.

1) Training Strategy of Encoder, Decoder, and Discrimina-
tor: The perturbations described in Section IV-B are imposed
sequentially during training. Experimentally we find that the
size of M has a substantial impact on the network’s con-
vergence. To alleviate the variance in size among various
images, the rectangular convex hulls enclosing the water-
marked regions within the same batch are resized to a unified
size [y x I;. Then they are concatenated together to form a new
tensor, which is subsequently fed into the decoder for training.
The encoder, the decoder, and the discriminator are trained via
the following stages.

a) Stage 1. optimizing decoder: We only train the
decoder first to gain the watermark extraction ability. In this
stage, binary cross entropy (BCE) between m and m is
employed as the sole loss Lg.. to optimize the decoder.

b) Stage 2. optimizing encoder, decoder, and discrim-
inator jointly: Both the encoder and the discriminator are
taken into account in this stage. In order to guarantee the
visual quality of watermarked images, multiple loss functions
related to image quality are introduced: the perceptual loss
Lygg defined in [35], the LPIPS perceptual loss Ljp;ps defined
in [36], the L2 loss L,, and the SSIM loss L, defined
in [37]. Taken altogether, the total loss for this stage is formed
as

L, = )\lngg + )QLlpips + A3L2 + AgLgsim
+ AsLsec + A6Lais (7N

where Lgis is the least squared adversarial loss suggested
in [38], and A1, A2, A3, A4, As, and Ag are the loss weight
factors.

It is noteworthy that managing the visual quality of water-
marked images can be challenging due to the intricate nature
of the imposed perturbations. Consequently, it is crucial
to integrate various loss functions related to visual quality.

10879

Although there may be other effective combinations of loss
functions, experimental outcomes demonstrate that the utilized
combination is effective for the training process.

2) Training Strategy of Calibrator: The calibrator outputs
2% n, real-valued offsets between the detected templates in I,
and those in 1. Therefore, we employ an L2 loss between the
real and estimated offsets as the geometrical correction loss
Lgeo. Furthermore, to ensure the accuracy of the calibrator in
real-world scenarios, the noise layer described in Section IV-B
is incorporated into the training process.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Settings

1) Dataset and Hyper-Parameter Setting: We randomly
select 30,000 images from the MS-COCO dataset [39] to
constitute our training dataset, and randomly select 100 images
from the rest for the evaluation. All the selected images are
resized to 3 x 400 x 400, that is, I, = 400 and [, =
400. The area threshold of the watermarking region is set
as Ty = Il x I /8. It should be noted that the length of
watermark sequences should not be too large, considering that
the watermark region is typically smaller than half of the
host image. Consequently, two values are established in the
experiments: /,, = 50 and [,, = 100. Experimental results
indicate that the network with longer watermark sequences
encounters difficulties in converging. Nevertheless, this length
of watermark sequences remains useful for indicating copy-
right ownership [12], [40], or labeling the output device. For
each experiment, the test watermark sequence is randomly
sampled from the Bernoulli distribution Ber(0.5).

The experiments are conducted on a GeForce RTX 3090
24G GPU in the environment of Python 3.8.8 and Pytorch
1.10.14+culll. During training, the hyper-parameters are set
as A1 =1, A =15 A3 =5, Ag =0.5, A5 =2, A¢ = 0.005.
The Adam optimizer [41] with hyper-parameters 81 = 0.5 and
B2 = 0.999 is employed for gradient descent. The learning rate
is set to 2 x 10~ for the baseline network and 1 x 1073 for the
adversarial network. All models are trained with a batch size
of 10. Additionally, we set ny; =2, Iy = 256, and n, = 4.

2) Evaluation Metrics: We use the bit error ratio (BER)
to measure robustness. Specifically, it is the ratio >_ |m[i] —
m[i]|/l,,. Consequently, the watermark extraction accuracy
(ACC) can be defined as: ACC = (1 — BER) x 100%.

For evaluating visual quality, PSNR, SSIM [37], and LPIPS
[36] are adopted as the metrics. In addition, we use Average
Corner Error (ACE) to assess the performance of the geometric
correction module. It is defined as the Lg., computed within
a single image.

B. Reliability Evaluation

We first assess the reliability of the proposed scheme
in accurately distinguishing between watermarked and non-
watermarked images. Since the proposed scheme focuses on
watermarking only the selected watermarking regions, rather
than the entire image, images that contain at least one water-
marked region are identified as watermarked. In the process of
watermark extraction, only regions with extraction accuracies
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(a) (®) (© (d
Demonstration of the accuracy of watermark extraction when

embedding watermarks in different regions. In (a), neither of the image

instances was used for watermark embedding. In (b), only the left instance

was used, in (c) only the right instance was used, and in (d) both instances

were employed.

Fig. 4.

TABLE I

TEST ON DISTINGUISHING BETWEEN WATERMARKED AND
NON-WATERMARKED IMAGES

Extraction Watermarked Watermarked
accuracy regions images
(identified/total) (identified/total)
host images 49% 0/0 0/0
images with one -y 00 10/10 10710
watermarked regions
images with two 100% 20,20 1010
watermarked regions
TABLE II

IMAGE QUALITY COMPARISON AVERAGED OVER
THE EVALUATION IMAGES

Method Iy = 50 Ly = 100
PSNRT  SSIM{  LPIPS| | PSNRT  SSIM{  LPIPS]
Stegastamp | 30.12 0.954 0.093 | 2840 0.935 0.075
RIHOOP | 35.90 0.971 0.013 | 2872 0.937 0.017
Ous | 3547 0.978 0016 | 29.19 0.942 0.018

exceeding 60% are considered as watermarked. Therefore, the
determination of whether an image is watermarked hinges
solely on whether regions with extraction accuracies exceeding
60% can be identified.

We select 10 test images, each containing multiple potential
watermarking regions, from the test image set. These images
are evaluated by successively using 0, 1, and 2 potential
watermarking regions each time. Specifically, a pseudorandom
binary watermark sequence of length 50 was embedded into
each test image. In the first scenario, neither instance was used
for watermark embedding. In the second scenario, one instance
was employed, while in the third scenario, both instances
were used. Figure 4 illustrates the extraction accuracies of
a test image across these scenarios. It can be observed that
the proposed scheme can accurately identify the watermarking
regions. The averaged experimental results are presented in
Table I. It demonstrates that our proposed scheme can effec-
tively distinguish between watermarked and non-watermarked
images.

C. Image Quality Evaluation

1) Visual Quality Test: We first assess the visual quality of
watermarked images. Figure 6 shows the differences in the
RGB channel between the original and watermarked images.
It can be observed that watermarking energy appears to be
evenly spread across all three channels. To comprehensively
assess the effectiveness of our approach, we compare it
with two state-of-the-art learning-based approaches, Stegas-
tamp [16] and RIHOOP [18]. These methods are specifically
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TABLE III
TEST ON CHANGES IN IMAGE FILE SIZE (KB) CAUSED BY WATERMARK
EMBEDDING
“Flower”  “Zebra” “Elephant” “Train”  Averaged
Host 106 168 147 178 149.75
Watermarked 112 169 155 185 155.25
TABLE IV

PARAMETERS USED IN EACH TYPE OF PERTURBATIONS

w‘ 1 ‘ 2 ‘ 3
parameter
Scaling | factor | 0.5 | 1.25 | 2
Defocusing ks 3 5 7
blurring o 1 2 3
Motion ks 7
blurring 7 3
angle [0°, 360 ] [0°, 360 ] [0°,360°]
feon [-0.1,0.1] [-0.2,0.2] [-0.3,0.3]
Color [—0.03, [—0.06,
Transform feot 0.03] 0. 06] (=0.1,0.1]
Fori [—0.1 0.1] | [-0.2,0.2] | [-0.3,0.3]
Gaussian I 0
noise o [0, 0. 007] [0, 0. 014] [0, 0.020]
Random —0.033, [—0.066,
noise ‘ factor ‘ 0.033] ‘ 0.066] ‘ (=01,0.1]
JPEG | QF | 90 | 70 \ 50
Perspective | st | [0,0.07] | [0,0.14] | [0,0.20]
Cropping ‘ radio ‘ 0.9 ‘ 0.6 ‘ 0.3
Combined ‘ ‘ combination of all the above

designed to resist camera-shooting attacks. The watermark
sequences’ lengths in them are set as same as those in our
scheme. Furthermore, they are retrained on our training set
for the sake of fair comparison.

Figure 5 illustrates some watermarked images generated by
different schemes. It can be observed that the watermarked
images generated by our scheme closely resemble the host
images. This may be because, compared with the Rols, the
backgrounds in images are generally smoother, which is not
suitable for embedding watermark sequences. Therefore, only
using Rols allows the proposed scheme to reach better visual
quality. Additionally, Table II compares the averaged PSNR,
SSIM, and LPIPS values of the watermarked images generated
by different schemes. It confirms the high visual quality of our
approach.

2) File Size Test: Next, The impact of watermark embed-
ding on the size of image files is evaluated. Table III presents
the experimental results on the test images depicted in Fig. 5,
as well as the results averaged over all the test images. It can
be observed that the proposed scheme only marginally alters
the image size, thereby avoiding a substantial escalation in
storage or transmission burden.

D. Robustness Evaluation

In this section, we conduct experiments in both simulation
and real-world scenarios to verify the robustness of the pro-
posed scheme.

1) Simulation-Based Robustness Test: We first evaluate the
robustness on synthetic perturbations. Besides the perturba-
tion described in Section IV-B, cropping attacks are also
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Demonstration of host and watermarked images. The images in (a) are the host images, in (b), (c), and (d) are the watermarked images generated

Fig. 5.
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by Stegastamp, RIHOOP, and the proposed scheme, respectively, with /,;, = 50, and in (e), (f), and (g) are the watermarked images generated by Stegastamp,

RIHOOP, and the proposed scheme, respectively, with /;; = 100.

© (@

Fig. 6. RGB channel difference between the original and watermarked
images. (a) is the original image, (b) is the watermarked image, (c), (d),
and (e) are the differences between (a) and (b) on the R, G, and B channels,
respectively.

(b) €

included because they usually occur during camera shooting.
The strength of each type of perturbation is parameterized
from 0 (weakest) to 3 (strongest). Table IV outlines the specific
parameters employed for each perturbation. These effects are
visually demonstrated in Fig. 7. We compare the accuracy of
watermark extraction between our scheme and two methods,
Stegastamp and RIHOOP, under these perturbations. The com-
parison results are depicted in Fig. 8. It can be observed all the
schemes can well resist common signal processing due to the
elaborate noise layer. However, their performance begins to
deteriorate when facing geometric attacks such as perspective
warping, cropping, and combined perturbations. Nevertheless,
the proposed scheme presents steadier robustness on these
geometric attacks than the compared schemes. It may be
attributed to the spatially concentrated watermark information
in the proposed scheme, which results in reduced susceptibility
to geometric attacks compared to other schemes. Given that
camera shooting often introduces such geometric distortions,
it implies that our scheme will offer superior robustness against
real-world camera-shooting attacks.

2) In-the-Wild Robustness Test: Real-world camera shoot-
ing involves various shooting conditions. To assess the
effectiveness of our proposed method across a range of real-
world scenarios, we captured numerous photos under different
shooting angles, distances, and light conditions. Note that

only parts of watermarked images that contain regions of
interest can be captured when the shooting distances are too
close, which corresponds to the scenario shown in Fig. 1(b).
Furthermore, we intentionally refrained from utilizing error
correction codes in all the schemes in order to only evaluate
the effectiveness of different models.

In the experiments, we utilized a Lenovo LT2223wA
monitor and a DELL E2417H monitor as our primary
display monitors. Photographs were captured using three
camera-equipped mobile devices: an 8-megapixel iPhone 6,
a 12-megapixel iPhone X, and a 13-megapixel Lenovo Legion
Tab y700. Subsequently, watermarked images are roughly
cropped out from the captured photos and resized to fit
different schemes.

a) Robustness under different shooting angles: We use
a bracket to fix the mobile device (30 cm from the monitor)
and adjust the orientation of the monitor accordingly. Then,
the shooting distance is adjusted to 8 cm, which causes that
only parts of images can be captured.

Figure 9 demonstrates several captured images as well as the
detection results. They show that the embedded watermark can
be successfully detected. We further list the averaged water-
mark extraction accuracies of different methods in Table V.
It can be seen that the proposed scheme exhibits comparable
accuracy to RIHOOP and outperforms Stegastamp when the
shooting distance is 30 cm. Since RIHOOP introduces a more
realistic shooting model, it performs slightly better than the
proposed scheme. However, when the shooting distance is
reduced to 8 cm, our method outperforms the compared ones
by a large margin. The scores obtained by Stegastamp and
RIHOOP are basically below 60%. In contrast, the proposed
scheme is sufficiently robust to different shooting angles
whatever the entire image is captured. This resilience can
be attributed to the follows. Given that Rols in an image
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Fig. 7. Demonstration of different perturbations. Top: watermarked image I,,q. Middle: distorted image Iyq. Bottom: magnified difference |Iyq — Iyql. The
employed perturbations in the figures are: scaling (scaling factor= 2), blurring (Gaussian blur: kernel size = 7, motion blur: kernel size = 7, angle = 35°),
color transformation (feon = 0.3, feor = 0.1, fp,-i = 0.3), noising (random noise: range in [—0.1, 0.1], Gaussian noise: u = 0, 0 = 0.02), JPEG compression
(QF = 50), perspective distortion (distortion strength = 0.2), and cropping (cropping ratio= 60%).
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TABLE V
WATERMARK EXTRACTION ACCURACY UNDER CAMERA-SHOOTING WITH DIFFERENT HORIZONTAL ANGLES

T 2
Perturbation Strength

(®)
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= Stegastamp(50)

—4— RIHOOP(50)

< Ours(50)
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Ours(100)

T 2
Perturbation Strength

()

Watermark extraction accuracy under (a) scaling, (b) blurring, (c) color transformation, (d) noising, (¢) JPEG compression, (f) perspective warping,

Method Angle Left 60°  Left 30°  Left 10° 0° Right 10°  Right 30°  Right 60°
Stegastamp (I, = 50) 95.60%  97.05%  97.25% = 99.45%  97.40% 96.30% 98.10%
RIHOOP (I, =50) 30 cm | 99.10%  9935%  99.75%  99.85%  99.75% 99.65% 99.70%
ours (Im = 50) 98.25%  99.65%  99.50%  99.88%  99.55% 99.70% 98.60%
Stegastamp (I, = 50) 52.18%  5345%  56.95%  56.43%  55.55% 53.78% 54.35%
RIHOOP (I, =50)  8cm | 5355%  51.68%  50.68%  52.78%  50.35% 51.90% 50.08%
ours (I, = 50) 98.55%  99.23%  98.68%  99.68%  99.38% 99.23% 98.60%
Stegastamp (I;, = 100) 98.00%  98.10%  98.23%  99.65%  99.00% 99.00% 98.65%
RIHOOP (I, = 100) 30 cm | 99.38%  99.15%  99.45%  99.75%  99.55% 99.53% 99.70%
Ours (I, = 100) 99.25%  99.35%  99.53%  99.75%  99.63% 99.40% 99.40%
Stegastamp (I, = 100) 4800%  45.50%  4835%  5936%  45.00% 41.78% 48.50%
RIHOOP (I,, = 100)  8cm | 5050%  50.10%  56.50%  45.82%  54.50% 48.00% 49.50%
ours (L, = 100) 98.45%  99.20%  99.15%  99.33%  99.20% 98.98% 98.35%

that distribute watermarks throughout the entire image are
likely to lose a considerable amount of embedded water-
mark information. Furthermore, these alternative schemes
rely on image boundaries for resynchronizing the captured
watermarked image, but such boundaries are often absent in

often occupy only a portion of the image and are typically
situated away from the periphery, it becomes imperative to
exclude a significant portion of the image in order to eliminate
specific segments of the watermarking region. When such a
large portion of an image is cropped, the compared schemes
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Fig. 9. Demonstration of watermark detection of the proposed scheme under
different shooting angles. In the first column are the captured images with
shooting distance 30cm. In the fourth column are the captured images with
shooting distance 8cm. In the second and fifth columns are their corrected
images, and in the third and last column are the detection results.

TABLE VI

WATERMARK EXTRACTION ACCURACY UNDER CAMERA-SHOOTING
WITH DIFFERENT DISTANCES

N ‘ 10 cm 20 cm 30 cm 40 cm 50 cm
Stegastamp (I,,, = 50) 5435%  90.75%  99.45%  99.85% = 99.03%
RIHOOP (I, = 50) 52.78%  90.85%  99.85%  99.93% = 99.43%
Ours (I, = 50) 99.13%  99.68%  99.88%  98.75%  96.13%
Stegastamp (I,,,, = 100) | 48.50%  98.50%  99.65%  99.45%  99.50%
RIHOOP (I,,, = 100) 44.75%  98.98%  99.75%  99.50%  99.65%
Ours (I,,, = 100) 99.00%  99.60%  99.75%  99.60%  99.55%

Captured
Images

~cwy

Corrected
Images

‘Watermarked
Regions

Ground Truth

20cm 30cm 40cm 50cm

Fig. 10. Demonstration of watermark detection of the proposed scheme
under different shooting distances. In the first column are the captured images,
in the second column are the corrected images, and in the last column are the
detection results.

10cm

partially captured images. Consequently, these schemes forfeit
their ability of resynchronization. As a result, the proposed
approach demonstrates greater robustness against partial image
capturing compared to the other schemes.
b) Robustness under different shooting distances:

We fix the position of the monitor and vary the dis-
tance between the shooting device and the monitor
in {10cm, 20cm, 30cm, 40cm, 50cm}. Visualization results
shown in Fig. 10 demonstrate the scheme’s efficacy across
all distances. The averaged watermark extraction results are
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(a) Weak (b) Medium

Fig. 11.  Demonstration of watermark detection of the proposed scheme
under different lighting conditions.

(c) Strong

TABLE VII

WATERMARK EXTRACTION ACCURACY UNDER CAMERA-SHOOTING
WITH DIFFERENT LIGHTING CONDITIONS

Method Angle Weak Medium  Strong Mean
Stegastamp(l,, = 50) | 96.35%  95.75%  84.58%  92.23%
RIHOOP({,,, = 50) 99.30%  99.58%  89.65%  96.18%
Ours(l,, = 50) 98.30%  97.15%  89.75%  95.07%
Stegastamp(l,, = 100) | 97.30%  95.05%  84.50%  92.28%
RIHOOP(!,, = 100) 98.18%  99.50%  90.23%  95.97%
Ours(l,, = 100) 98.30% 98.13%  89.55%  95.33%

compared in Table VI. It indicates that the performances of
Stegastamp and RIHOOP decrease noticeably in close shots.
It may be due to the effect of unconsidered noises, such as
moire patterns. On the other hand, the proposed scheme does
not perform very well with increasing the shooting distance.
It may be because the watermarking energy in the proposed
scheme is concentrated in image instances, which is more
sensitive to the loss of image details. The compared schemes
often fail to extract watermark sequences when only parts
of images are available. In contrast, our scheme maintains a
high level of accuracy (above 95%). As a result, the proposed
scheme is robust to various shooting distances.

¢) Robustness under different light conditions: We eval-
uate the robustness of our scheme against different light
intensities. Specifically, half of the images are displayed on
a DELL E2417H monitor, and the remaining half are shown
on a Lenovo LT2223wA monitor. Subsequently, an external
light source is used to illuminate the screen at three different
intensities: weak, medium and strong. Figure 11 illustrates the
captured images under these light intensities. The experimental
results are reported in Table VII. It can be observed that all
three schemes exhibit an accuracy exceeding 90% under weak
and medium light intensity. However, as the light intensity
increases, the accuracy of Stegastamp decreases below 85%,
whereas our scheme and RIHOOP can still maintain an
accuracy close to 90%. These results indicate the remarkable
robustness of our scheme to illumination variations.

d) Variations of different devices: Recognizing the uti-
lization of two types of display monitors and three types of
camera-equipped mobile devices in our experiments, we assess
the impact of these devices on robustness. We record the
monitor and camera used for capturing each photo, and
compare the performance of all the combinations. Table VIII
details the robustness comparison among these combinations,
where the shooting distance is 30 cm and the shooting
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TABLE VIII
COMPARISON OF WATERMARK EXTRACTION ACCURACY USING DIFFERENT DEVICES

N DELL E2417H Lenovo LT2223wA
iPhone 6 iPhone X Legion Tab | iPhone 6 iPhone X Legion Tab
Stegastamp( 0°) 99.70% 100.00% 99.31% 98.53% 100.00% 99.76%
RIHOOP( 0°) 99.72% 100.00% 99.67% 99.47% 99.92% 99.74%
Ours( 0°) 99.86% 99.83% 99.84% 99.70% 99.85% 99.82%
Stegastamp( 30°) 94.07% 98.47% 99.00% 95.13% 99.00% 99.48%
RIHOOP( 30°) 98.90% 100.00% 98.89% 98.90% 99.82% 100.00%
Ours( 30°) 99.57% 99.66% 99.57% 99.42% 99.54% 99.60%
TABLE IX
WATERMARK EXTRACTION ACCURACY UNDER PRINTING-SHOOTING ATTACKS
Method Scene Indoor  Outdoor Mean Indoor  Outdoor Mean
(entire)  (entire)  (entire) (part) (part) (part)
Stegastamp(l,, = 50) | 97.55% 96.23% 96.89% 52.48% 51.13% 51.81%
RIHOOP(,,, = 50) 99.68%  98.45%  99.06% 49.65%  53.30% 51.48%
Ours(l,, = 50) 99.35%  98.70% 98.44% 98.15%  98.73%  97.63%
Stegastamp(l,, = 100) | 98.05% 97.13% 97.59% 66.23% 69.13%  67.68%
RIHOOP(I,,, = 100) 99.88%  99.35%  99.62% 51.43%  46.18%  43.81%
Ours(l,,, = 100) 99.73%  99.68% 99.711% 98.83% 96.13%  97.48%
. . Watermarked Corrected Captured
angles vary in {0°, 30°}. In the table, the best two combi- Regions Images Tmages

nations for each method are underlined for emphasis. It can
be observed that the three schemes present considerable
robustness regardless of the monitor-camera combination.
Furthermore, we observe a positive correlation between the
number of camera pixels and the accuracy of watermark
extraction. However, the minor exception to this is the Lenovo
Legion Tab y700, which does not perform very well when the
shooting angle is 0°. This may be attributed to the fact that
the camera’s larger vision field unexpectedly compromises the
resolution of the captured watermarked image.

e) Robustness on printed images: At last, we test
the robustness on another type of challenge distortions,
printing-shooting attacks. To conduct this test, we printed the
watermarked images using a TOSHIBA STUDIO457 color
consumer printer and captured them using camera equipment
in both indoor and outdoor environments. The settings for the
camera equipment were identical to those used for the camera-
shooting attacks.

We captured 40 images for each camera under each con-
dition. The results of the watermark detection are visually
presented in Fig. 12. Table IX reports the averaged accuracies,
where “entire” and “part” indicate whether an entire image is
captured. These results show that the proposed scheme effec-
tively resists printing-shooting attacks, regardless of whether
the entire image or just a portion is captured, and is not
influenced by the camera model used.

E. Ablation Study

In this section, we evaluate the fundamental design of
the proposed scheme through ablation studies, particularly
focusing on the geometric correction module and the loss
function. It is worth noting that, for the sake of simplicity,

Indoor

I

Watermarked
Regions

Captured
Images

Corrected
Images

Outdoor

Fig. 12.  Demonstration of watermark detection of the proposed scheme
under printing-shooting attacks. In the first column are the captured images,
in the second column are the corrected images, and in the last column are the
detection results. These examples include different lighting conditions.

we utilize a consistent value of [,,, = 50 for all the test schemes
presented in this section.

1) Geometric Correction: This subsection investigates three
cases: no geometric correction, manual correction, and geo-
metric correction module. In the first case, we directly
decode the geometrically distorted images. In the second case,
we manually align the distorted and original watermarked
images through SIFT keypoint matching, and inverse the
geometric distortion. Finally, in the last case, the geomet-
ric correction module described in Section IV-C.1 is used.
Figure 13 demonstrates these cases. The comparison results are
listed in Table X, where, besides a perspective warping with a
strength of 0.1, distortion 1 is accompanied by defocusing
and motion blurring, and distortion 2 is accompanied by
Gaussian noising and JPEG compression. The computation
time is assessed by using an Intel(R) Xeon(R) Gold 6226R
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TABLE X
WATERMARK EXTRACTION RESULTS IN CASES OF DIFFERENT GEOMETRIC CORRECTION
No geomeU1c Manuz}l Gef)metrlc Method Distortion 1~ Distortion 2 | Cost time
correction Correction | correction module
X X Stegastamp 74.19% 77.02% 0s
X X RIHOOP 51.16% 52.34% 0s
X X Ours 94.14% 93.62% 0Os
v X Stegastamp 96.16% 96.88% 0.076s
v X RIHOOP 99.65% 99.81% 0.067s
v X Ours 95.85% 98.27% 0.071s
X 4 Ours 99.73% 99.49% 0.022s

(b)

Fig. 13. Demonstration of geometric correction effect. (a) is the watermarked
image, (b) is the geometric distorted version, (c) is the image after manual
correction, and (d) is the image corrected with the geometric correction
module.

TABLE XI
ABLATION RESULTS OF COMBINATIONS OF LOSS FUNCTIONS

Loss | PSNRT SSIMt LPIPS| ACE, ACCH

Ly | 2983 0.940 0.100 227  9831%
Lz | 3062 0.907 0.027 2.21 98.58%
Liz | 3547 0.978 0.016 206 99.88%

CPU operating at 2.90GHz with 24GB of RAM, alongside a
GeForce RTX 3090 GPU with 24GB of memory. This eval-
uation was conducted within an environment utilizing Python
3.8.8 and the Pytorch framework version 1.10.14-culll.

It suggests that geometric correction is necessary, because
the watermark extraction accuracy decreases seriously when
no geometric correction is applied for all the schemes. How-
ever, surprisingly, the influence is less in the proposed scheme.
It may be because watermarking regions are usually located at
the center of the captured images, rendering them less suscep-
tible to distortion than the surrounding regions. On the whole,
the geometric correction module can provide better robustness
with less computation time than manual correction. It confirms
the effectiveness of the proposed geometric correction module.

2) Combination of Loss Function: In this subsection,
we validate the effectiveness of the combined loss function
described in Section IV-D.1 by training three models. The first
model employs a loss function of L;1 = Lygg + L2 + Lgec,
the second model uses a loss function of L;» = Liypips +
Lygg + Lo + Lgec, and the third model uses a loss function
of Li3 = Lgim + Lais + Llpips + ngg + Ly + Lgec.
Experimental results of these three models are compared in
Table XI. It demonstrates that the employed combination of
loss functions can simultaneously enhance the performance of
the geometric correction module (ACE reduces from 2.27 to
2.06), the watermark extraction accuracy of decoder (ACC
increases from 98.31% to 99.88%), and the visual quality of
watermarked images (PSNR increases from 29.83 to 35.47,

(a) Host (b) L1 (©) Ly2 (d) L¢3
Fig. 14. Watermarked images obtained by the encoding end supervised with
different combined loss functions.

SSIM increases from 0.940 to 0.978, and LPIPS reduces
from 0.100 to 0.016). Figure 14 gives the corresponding
visualization results.

VI. CONCLUSION

In this paper, we propose an instance-level watermarking
scheme that can resist various distortions, including both
camera-shooting and printing-shooting attacks. It is composed
of an encoding end, a noise layer, and a decoding end.
The encoding end consists of three modules: region selection
module, watermark encoding module, and template embedding
module. The region selection module selects watermarking
regions according to image instances. The watermark encod-
ing module uses a residual-dense structure-based encoder to
generate a locally watermarked image, guided by the selected
watermarking regions. Additionally, the template embedding
module embeds templates at prefixed points for the water-
mark resynchronization. The decoding end also consists of
three modules: geometric correction module, region detecting
module, and watermark decoding module. The geometric
correction module calculates location probability maps from
the received watermarked image and a reference image. It uses
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a calibrator to detect and inverse the perspective projection.
The region detecting module detects watermarking region, and
the watermark decoding module extracts watermark sequences
from these regions. Furthermore, to address the geometric
distortions that arise from camera shooting, we propose a
novel template-based resynchronization method that effec-
tively corrects such distortions without relying on visible
markers. Experimental results demonstrate that our method
exhibits strong resistance to camera-shooting attacks under
various shooting conditions, accurately extracting embedded
watermark sequences.

The proposed scheme offers a solution for tracking the
unauthorized distribution of private digital media. In the
event that watermark is detected within the distributed image,
we can leverage it to trace its source of leakage. Furthermore,
it can also be used for content authentication and copyright
protection. For instance, we can ascertain the authenticity of
image content if an image exhibits regions with conflicting
watermark, lacking the intended watermark, or containing
watermark associated with another image. The watermarked
region can also serve as an invisible stamp, facilitating granular
copyright protection for image content. Nevertheless, it is
noteworthy that since the watermark information is not dis-
tributed across the entire image, our current scheme cannot be
employed for integrity verification.

A limitation of our current scheme is that the length of
the watermark sequence cannot exceed 100 bits due to the
restricted watermarking region area. Increasing the watermark-
ing capacity remains a focus for future work. Additionally,
we are exploring other color models and resynchronization
methods, such as binocular stereo, to further enhance robust-
ness against camera-shooting attacks.
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