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Robust Generative Steganography for Image Hiding
Using Concatenated Mappings
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Abstract—Generative steganography stands as a promising
technique for information hiding, primarily due to its remarkable
resistance to steganalysis detection. Despite its potential, hiding
a secret image using existing generative steganographic models
remains a challenge, especially in lossy or noisy communication
channels. This paper proposes a robust generative steganography
model for hiding full-size image. It lies on three reversible con-
catenated mappings proposed. The first mapping uses VQGAN
with an order-preserving codebook to compress an image into a
more concise representation. The second mapping incorporates
error correction to further convert the representation into a
robust binary representation. The third mapping devises a
distribution-preserving sampling mapping that transforms the
binary representation into the latent representation. This latent
representation is then used as input for a text-to-image Diffusion
model, which generates the final stego image. Experimental
results show that our proposed scheme can freely customize the
stego image content. Moreover, it simultaneously attains high
stego and recovery image quality, high robustness, and provable
security.

Index Terms—Generative steganography, reversible mappings,
customizability, robustness, provable security.

I. INTRODUCTION

IMAGE steganography aims to conceal secret messages
within unassuming stego images, ensuring that no suspicion

is aroused among unauthorized individuals. Only those with
the proper authorization can retrieve the hidden information.
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This technique holds paramount importance in the realm
of multimedia security and privacy preservation. Given the
pervasive use of digital images for conveying vital information
across various sectors, including military, medical, and com-
mercial domains, image steganography that can hide secret
images has emerged as a pivotal subset within this field. It
calls for that a steganographic method can integrate the secret
image into the stego image without degrading its visual quality
or introducing detectable anomalies.

Traditional steganography modifies a natural cover image to
embed a secret message, yielding a stego image that closely
mirrors the cover for covert communication. Early techniques,
for instance, embedding message bits in the least significant
bits (LSBs) of pixels [1], [2], often led to noticeable changes in
the statistics of natural images. To mitigate this issue, content-
adaptive steganographic methods such as Syndrome-Trellis
Codes (STC) [3], [4] and Steganographic Polar Codes (SPC)
[5] were developed. These methods encode messages in a way
that minimizes heuristically defined distortion functions. With
the advent of deep learning, numerous approaches have lever-
aged various network models to conceal secret data [6], [7],
[8]. By acknowledging that perfect encoding of secret images
is not necessary, Baluja [9] pioneered the successful hiding
of an image within another using neural networks. Recently,
Invertible Neural Network (INN)-based image steganography
models [10], [11], [12], [13], [14] have emerged, effectively
harnessing the capabilities of INNs to establish invertible
mappings between cover+secret and stego images. Despite
these advancements, all aforementioned methods still require
modifying cover images, inevitably introducing statistical
anomalies. Consequently, the attackers can develop stegan-
alytic tools to discern the distributions of cover and stego
images [15], [16], [17].

In contrast, generative steganography eliminates the draw-
backs of modification-based methods by directly synthesizing
stego images driven by secret messages. This characteristic
theoretically enhances the security of steganography. Wei et al.
[18] hide secret data in feature maps using StyleGAN [19].
Su et al. [20] develop a distribution-preserving secret data
modulator to achieve provable security. Liu et al. [21] exploit
the stability of structural features to robustly hide secret
messages. However, these methods may require extensive and
costly training due to their intricate adversarial objectives [22].
Some approaches have employed Flow models [23], [24]. Wei
et al. [23] establish a reversible bijective mapping between
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secret data and generated stego images using Glow [25], while
Zhou et al. [24] design a reversible mapping between secret
bits and latent vectors. Recently, thanks to their powerful
generative capabilities, Diffusion models have been adopted
as the foundation. Yang et al. [26] map the watermark to
latent representation following a standard Gaussian distribu-
tion, while Hu et al. [27] design an orthogonal transformation
kernel to transform binary messages into Gaussian-distributed
latent vectors. These methods create diverse mappings capa-
ble of maintaining the input distributions within the utilized
generative models, thereby ensuring provable steganographic
security. However, they may not provide sufficient capacity to
conceal entire secret images. Yu et al. [28] build a secret-
stego invertible mapping known as CRoSS, and DiffStega
[29] further employs pre-determined passwords instead of text
prompts alone to ensure security. Nevertheless, these methods
can only conceal a portion of a secret image, leaving a
significant part unchanged.

The mapping between message and latent representation
space is pivotal in generative methods. However, existing
mappings often fall short in accommodating a message space
with sufficient dimension to represent secret images. Fur-
thermore, the inherent numerical instability and sensitivity to
perturbations in generative models pose significant challenges
for achieving robustness [12], [27]. Consequently, it is often
necessary to sacrifice limited capacity to enhance robustness.
Given that images inherently contain significant redundancy,
compressing the image before mapping it to the latent rep-
resentation presents a prudent approach. Techniques such as
vector quantization [30], [31], image degradation model [32],
and dictionary learning [33] can learn compact representa-
tions of high-dimensional data. Among them, VQGAN [31]
stands out as a formidable learned image compression archi-
tecture, integrating a learnable vector-quantization codebook
with compressive VAEs. By leveraging this technique, we
can significantly reduce the amount of information that needs
to be concealed. However, the compressed representations
generated by VQGAN are sensitive to distortions. To address
this issue, we propose an order-preserving coding to bolster
the robustness of VQGAN.

In this paper, we propose a robust generative stegano-
graphic scheme that can hide an image within a stego
image of the same size. We utilize the concepts of neural
image compression to craft a series of robust mappings that
not only enhance capacity but also guarantee robustness.
Specifically, three invertible mappings are designed. The first
mapping compresses an image into a more concise repre-
sentation by leveraging a robust version of VQGAN. The
second mapping introduces an error correction mechanism by
appending check codes. In the third mapping, we devise a
distribution-preserving sampling mapping that transforms the
secret information into a latent representation that follows a
standard Gaussian distribution. Finally, by employing a text-to-
image Diffusion model, users can freely customize the content
of stego images. The proposed scheme can generate stego
images that are indistinguishable from typical AI-generated
ones, which also present remarkable robustness. Our contri-
butions can be summarized as follows:

• A robust generative image steganography scheme that
is founded on three reversible concatenated mappings is
presented. It enables the hiding of an image within a
user-customizable AI-generated image of the same size,
fulfilling the desirable properties of security, diversity,
robustness, and capacity, simultaneously.

• An order-preserving codebook is introduced in the first
mapping. It is constructed using the proposed hierar-
chical clustering-based index assignment algorithm. By
leveraging the capabilities of VQGAN in conjunction
with this codebook, the first mapping achieves efficient
compression efficiency and robustness.

• A distribution-preserving noise sampling method is sug-
gested in the third mapping. This method ensures that
only the coefficients with the largest absolute ampli-
tude are used to carry message bits. Additionally, a
dual-sample strategy is employed to append the secret
information. The third mapping can provide provable
security while further enhancing the robustness.

II. RELATED WORK

A. Diffusion Models

Diffusion models [34], [35] have emerged as a powerful
framework for generative tasks, enabling the synthesis of
high-quality images from Gaussian noise through progressive
denoising. The training procedure consists of two processes:
the forward diffusion process and the backward denoising
process. In the forward process, Gaussian noise of varying
scales is gradually added to the training image at each step.
In the backward process, the original image is recovered by
sequentially removing the noise, which is estimated by a neural
network based on U-Net architecture [36]. To reduce computa-
tional costs of directly operating in pixel space while retaining
the quality and controllability, the Latent Diffusion Model
(LDM) [37] applies diffusion processes in the latent space
of pretrained autoencoders. By using deterministic sampling
such as DDIM [34] and EDICT [35], Diffusion can identify
the initial noise that generates the image during the diffusion
process. In this paper, we use Stable Diffusion to construct a
novel covert channel for transmitting secret images.

B. Diffusion-Based Generative Image Steganography

Compared to other generative models, Diffusion-based
image steganography models have become a focal point in
generative steganography due to their exceptional image gen-
eration quality. Most of them are based on DDIM Inversion
[34] to achieve reversible mapping between the initial noise
distribution and the generated image distribution. Yang et al.
[26] and Hu et al. [27] embed secret bits into the initial
noise latent, achieving great robustness and diversity in the
stego image. However, constrained by the limited embedding
size of the initial noise latent, [26] can only hide 256 bits
(capacity is 0.000975 bpp (bits per pixel)), while [27] can hide
16384 bits (capacity is 0.0625 bpp). For high-capacity models,
CRoSS [28] creates a mapping between secret and stego image
of the same size by using two DDIM Inversion loops with
different prompts to achieve dual-direction image translation
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Fig. 1. Application scenario.

between them. Based on CRoSS, DiffStega [29] overcomes
the risk of text prompts leakage in CRoSS by incorporating
pre-determined passwords. However, even though they can
formally achieve image-in-image concealment (capacity is
24 bpp), they struggle to conceal the overall content of the
secret image. This is because image translation in CRoSS
and DiffStega can only replace specific components of the
secret image, leaving noticeable overlaps between the secret
and stego images. In this paper, we propose a controllable
and robust generative steganography method that is capable
of hiding full-size images and overcoming the shortcomings
related to the similarities between secret and stego images.

III. PROPOSED METHOD

A. Application Scenario

This paper considers a covert communication application
based on AI-generated images. As shown in Fig. 1, there
are three roles in the scenario: the sender Alice, the receiver
Bob, and the potential attacker Eve. Alice synthesizes a stego
image Istego with the secret image Isecret hidden in it. Istego

is then transmitted through a public channel without arous-
ing Eve’s suspicions. Note that the channel may introduce
distortions, such as noise and compression, leading Bob to
receive a degraded version of the stego image, denoted as
I′stego. Consequently, there is a need for Bob to be able to
recover an approximate secret image I′secret from I′stego.

To achieve this, the generative image steganography requires
the following four essential properties:
• Security: We consider security from three dimensions:

1) provable steganographic security, ensuring that Eve,
regardless of her steganalysis prowess, cannot detect the
presence of secret information. 2) perfect secrecy, which
mandates that the stego image Istego cannot be recovered
without the decryption keys, even if Eve has access to the
secret extractor. 3) undetectability, where the generated
Istego maintains high visual fidelity, rendering it indistin-
guishable from the output produced by comparable image
synthesis tools.

• Diversity: Alice must have the liberty to customize the
stego image Istego to suit various application contexts,
unfettered by any particular stylistic or content con-
straints. It is in fact a one-to-many mapping, where
a single secret image corresponds to multiple potential
candidates. Nevertheless, the large volume of information
in Isecret poses challenges in maintaining independence

between the styles and content of Isecret and Istego, par-
ticularly in generative methods, often resulting in limited
diversity.

• Robustness: Bob must be able to retrieve a high qual-
ity approximation of the secret image I′secret ≈ Isecret

from the degraded stego image I′stego. This necessitates
steganographic strategies that can withstand common sig-
nal manipulations like JPEG compression and Gaussian
noise. However, achieving robustness often comes at the
sacrifice of hiding capacity, exacerbating the challenge of
concealing an entire image.

• Capacity: The scheme must possess sufficient capacity
to hide a secret image. However, preserving the diversity
of Istego necessitates a one-to-many mapping within the
generative model. This introduces a constraint where
the space of secret images is inherently smaller than
that of stego images, conflicting with the aspiration of
maintaining equal-sized spaces for hiding image in image.

B. Network Framework

We introduce a generative steganographic network designed
to fulfill the four properties mentioned above. The architecture
of the proposed network is illustrated in Figure 2. It comprises
two primary components: an embedder and an extractor. The
embedder takes a secret image and a prompt as inputs. It then
generates a stego image that is in harmony with the provided
prompt. The extractor, on the other hand, is tasked with
recovering the secret image from the potentially distorted stego
image. Both the embedder and the extractor are constructed
as compositions of three concatenated invertible mappings,
followed by a generative Diffusion model.

Mapping Γ1 for Perceptual Image Compression com-
presses an RGB image into a more concise representation by
leveraging a robust vector-quantized codebook. This transfor-
mation creates a favorable representation for subsequent robust
coding endeavors.

Mapping Γ2 for Error-Resilient Presentation further
enhances the robustness by appending check codes to the
output of Γ1. This step imparts error correction capabilities,
mitigating potential transmission errors.

Mapping Γ3 for Distribution-Preserving Sampling trans-
forms the obtained codes into a latent space whose distribution
aligns with the input requirements of the Diffusion model, thus
enabling its utilization as input for generating stego images.
This mapping not only reinforces the robustness but also
ensures the provable steganography security.

Consequently, the embedder can be articulated as:

Istego = Diff(Γ3(Γ2(Γ1(Isecret)))) (1)

Here, Diff represents a Diffusion model that translates a latent
representation into an image. For the realization of this model,
we employ a pre-trained, shared text-to-image Diffusion model
[37], leveraging its capabilities to synthesize high-fidelity
images. Correspondingly, the extractor can be formed as:

I′secret = Γ−1
1 (Γ−1

2 (Γ−1
3 (Diff−1(I′stego)))) (2)

The three mappings are detailed in the following sections.
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Fig. 2. The proposed generative image steganography framework.

C. Mapping Γ1 for Perceptual Image Compression

1) Compression Based on VQGAN: The first mapping is
implemented by Perceptual Image Compression based on
VQGAN [31], which consists of an encoder EVQ, a decoder
DVQ, and a discrete codebook C = {zl}

2nc

l=1 ⊂ R
nz with 2nc

codewords, where nz is the dimension of each codeword.
An image I ∈ RnH×nW×3 is represented by a collection of
codewords Z ∈ Rnhb×nwb×nz . The (i, j)-th entry of Z, denoted
as zi, j, is obtained by quantizing the (i, j)-th entry of Ẑ =

EVQ(I) ∈ Rnhb×nwb×nz to the closest codeword in C:

zi, j =

�
arg min

zl∈C

ẑi, j − zl
� ∈ Rnz (3)

The decoder DVQ maps Z back to the image space to realize
high quality reconstruction Î ≈ I:

Î = DVQ(Z) (4)

In the original VQGAN, each nH
nhb
× nW

nwb
size image block

is represented by a floating-point codeword zi, j of length nz.
However, the volume of zi, j is still too large to be hidden. As
a result, we use the index x of the codeword to represent the
image block, which is given by:

xi, j =

 
arg min

l∈{0,1,··· ,2nc }

ẑi, j − zl
! ∈ {0, 1, · · · , 2nc − 1} (5)

Consequently, each decimal index xi, j can represent an image
block of size nH

nhb
× nW

nwb
, which serves as the output of Γ1. Then,

the image-to-indices bijective mapping Γ1 can be formed as:

Γ1 : I ∈ RnH×nW×3 7→ X ∈ {0, · · · , 2nc − 1}nhb×nwb (6)

The codebook C is shared by both sender and receiver.
Therefore, with the index collection X, the original image I
can be reconstructed with high quality.

2) Robust Codebook Generation: The inversion of Γ1,
denoted as Γ−1

1 , maps an index xi, j in a compact space to
an image block in a much larger space. Consequently, any
errors present in xi, j undergo significant amplification in the
recovered image I′secret. To enhance the robustness of Γ1, we
devise an order-preserving codebook Co, ensuring that indices
with close proximity are mapped to codewords exhibiting
small differences. Specifically, for any zl ∈ Co indexed by l,
the following property holds:

Lz(zl1 , zl2 ) < Lz(zl1 , zl3 ) (7)
if Ll(l1, l2) < Ll(l1, l3) (8)

where Ll(l1, l2) denotes a distance metric between l1 and l2,
and Lz(zl1 , zl2 ) denotes a distance metric between zl1 and zl2 .
Since l will be encoded in binary form via Γ2, we adopt the
Hamming distance as Ll, measuring the difference between the
binary representations of l1 and l2. This design of the codebook
ensures that minimal errors in indices translate into minimal
disturbances in codewords, thereby mitigating degradation in
the recovered image.

To construct Co, we introduce an index assignment algo-
rithm based on hierarchical clustering. It groups all the
codewords from the original codebook in a top-down, divisive
fashion, iteratively assigning unused indices to the central
codeword of each formed cluster. The index assignment
is detailed in Algorithm 1, which operates recursively. To
tackle the challenge posed by the curse of dimensional-
ity in high-dimensional data, which frequently undermines
clustering performance, we utilize dimensionality reduction
algorithms, such as UMAP [38]. It maps codewords into two-
or three-dimensional space, while meticulously preserving
their intricate patterns. Our algorithm then operates within
this dimensionality-reduced codebook. At each iteration, the
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Algorithm 1 Index Assignment
�
C,Z, n f

�

number of subclusters n′ is first estimated. Then a clustering
method, such as K-Means [39], is employed to obtain these
subclusters. Subsequently, the Index Generation function
(detailed in Algorithm 2) generates n′ unused indices L∗,
ensuring that for any l∗i , l

∗
j ∈ L

∗, it satisfies that Ll(l∗i , l
∗
j) ≤

2 × n f . Finally, these indices are assigned to the central
codeword of each subcluster.

In Algorithm 1, n f serves to regulate the Hamming dis-
tance among the assigned indices. Empirically, we find that
semantically related codewords can be effectively clustered
and mapped to contiguous indices during the early stages of
the algorithm. Two constraints should be observed in order to
maintain a good order-preserving property.

(1) Intra-cluster distance constraint. The codeword in a
subcluster C∗i∗ should be closer to the central codeword
of its parent cluster C j than to any other uncle cluster’s
central codeword. Mathematically, this can be expressed
as

Ll
�
l∗i , ct j

�
< Ll

�
l∗i , ct j′

�
, ∀z∗l∗i ∈ C

∗
i∗ ,∀C j′ ∈ C/{C j} (9)

where l∗i denotes the index of z∗l∗i . zct j and zct j′ denote
the central codewords of C j and C j′ , respectively, with
ct j and ct j′ being their indices. To achieve this, the

Algorithm 2 Index Generation
�
l, n f , n, Co

�

following distance constraint should be maintained:

Ll
�
ct∗i , ct j

�
< 4× Ll

�
ct j, ct j′

�
, ∀C j′ ∈ C/{C j} (10)
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Fig. 3. Example of index assignment process: After the first iteration, all
the codewords C have been clustered into 3 subclusters C1, C2, C3 and their
central codewords zct1 , zct2 , zct3 have been assigned with indices. In the second
iteration, C1 have been clustered into C∗1 , C∗2 , C∗3 and their central codewords
z∗ct1 , z∗ct2 , z∗ct3 need to be assigned. Denote d1 = Ll

�
ct∗1, ct1

�
, d2 = Ll

�
ct∗1, ct3

�
,

d3 = Ll
�
ct∗2, ct2

�
, d4 = Ll

�
ct∗3, ct3

�
. The Intra-cluster distance constraint is to

assure d1 < d2, the Inter-cluster distance constraint is to assure d4 < d3.

where ct∗i is the index of z∗ct∗i
, which is the central

codeword of C∗i∗ . This requires that the n f used for the
next iteration of Index Assignment should be smaller
than dn f /4c (See Line 22 in Algorithm 1).

(2) Inter-cluster distance constraint. If a cluster is closer
to one of its uncle clusters than to others, the index of its
central codeword should reflect this proximity. Formally,
for C∗i∗ ⊂ C j and its uncle clusters Ck, Ck′ ∈ C/{C j},

Ll
�
ct∗i , ctk

�
< Ll

�
ct∗i , ctk′

�
(11)

if Lz

�
z∗ct∗i

, zctk

�
< Lz

�
z∗ct∗i

, zctk′

�
(12)

Line 9 to 20 in Algorithm 1 is used to assign indices so
that they can satisfy Eq. (11).
Figure 3 illustrates an example of these two constraints.

D. Mapping Γ2 for Error-Resilient Presentation

The second mapping Γ2 converts the decimal index col-
lection X into its robust binary presentation M. Note that in
its inverse mapping Γ−1

2 , even a slight dispersion of errors
across the extracted binary indices can significantly perturb a
substantial portion of indices upon their conversion back to
decimal form. To mitigate this issue, we append a check code
that serves to detect and correct potential errors.

Given the index collection X ∈ {0, · · · , 2nc − 1}nhb×nwb , it is
first converted into its binary presentation by:

mi, j,k = bxi, j/2(k−1)c mod 2, k ∈ {1, · · · , nc} (13)

After that, a binary check code of length 2nc is generated,
which is denoted as mchk. Specifically, the l-th bit of mchk is
set to 1 if and only if there is an xi, j whose value is exactly
l. Otherwise, it is set to 0. This check code is then appended
to the end of M, constituting the output of Γ2. Formally, the
decimal-to-binary mapping Γ2 can be described as:

Γ2 : X∈{0, · · · , 2nc − 1}nhb×nwb 7→ M∈{0, 1}nhb×nwb×nc+2nc (14)

At the receiver, the binary code M′ is extracted from the
received image I′stego. The extracted indicator code m′chk is then

used to validate each x′i, j derived through the inverse mapping
Γ−1

2 . If x′i, j is recovered as l′ yet the l′-th bit of m′chk is 0,
an extraction error is flagged. Given the assumption that the
majority of M′ has been accurately extracted, we posit that
there is at most one single bit error in either x′i, j or m′chk. As
a result, we iterate through all possible nc indices by flipping
a single bit in x′i, j and ascertain whether there exists an index
value l′′ for which the l′′-th bit of m′chk is 1. If such an
index is identified, we conclude that the error lies in x′i, j and
accordingly set x′i, j = l′′. Conversely, if no such index is found,
we deduce that the l′-th bit of m′chk is erroneous and proceed to
flip it, while retaining x′i, j = l′. Through this correction logic,
we address potential errors in both the message and the check
code itself.

E. Mapping Γ3 for Distribution-Preserving Sampling

The third mapping Γ3 transforms the binary code M to
the final sampled noise S ∼ N (0, 1) that can be used as the
input to the designated Diffusion model. Moreover, Γ3 plays
a pivotal role in enhancing robustness and ensuring perfect
secrecy.

To address the Diffusion model’s sensitivity to diverse
distortions, we employ a dual-sample strategy within the set Z
as a cover to embed each bit of M. Initially, M is augmented
twofold via the following transformation:

m̃2i−1 = mi (15)
m̃2i = mi ⊕ 1 (16)

where m̃i represents the i-th bit in the expanded M̃ ∈

{0, 1}2×(nhb×nwb×nc+2nc ). Subsequently, M̃ will be encrypted to
~M with a secret key K(1) ∈ {0, 1}2×(nhb×nwb×nc+2nc ) using a

stream cipher:
~mi = m̃i ⊕ k(1)

i (17)

It can be noted that the encrypted bit ~mi follows a uniform
distribution:

p(~mi = 0) = p(~mi = 1) =
1
2

(18)

Next, a latent representation S ∈ Rnhi×nwi×nci will be
sampled as the input of the Diffusion model. Coefficients
possessing larger absolute amplitudes exhibit a heightened
capacity to accommodate numerical shifts, thereby diminish-
ing the likelihood of message extraction errors. Leveraging
this principle, the dual-sample strategy employs two substan-
tial coefficients with opposite signs for message mapping,
significantly enhancing its robustness. As a result, we use
2 × (nhb × nwb × nc + 2nc ) coefficients with the largest
absolute amplitudes to carry message bits. First, the positions
of these coefficients are selected in S using a pseudorandom
permutation with secret key K(2). It is executed by permuting
S through a chaotic pixel shuffle [40], followed by selecting
the first specified length of positions from the permuted S. Let
ps denote the probability that the position s in S is selected.
This probability, ps, is equivalent to that of a simple random
sampling in S:

ps =
2× (nhb × nwb × nc + 2nc )

nhi × nwi × nci
(19)
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By combining Eq. (18), it can be derived that the probability
of a position being selected to carry ~mi = 0 or ~mi = 1 is equal
to:

p(si, ~mi = 0) = p(si, ~mi = 1)

= ps · p(~mi = 0) =
ps

2
(20)

We then sample a coefficient in N (0, 1) according to the
following rule. Let pd f (x) denote the probability density
function of the Gaussian distribution N (0, 1), and ppf denote
its corresponding quantile function. We divide pd f (x) into
three cumulative probability portions by using thresholds
τ = pp f (ps/2) and −τ = pp f (1− ps/2). When a coefficient si

is selected to represent ~mi = 0, si should fall into the interval
(−∞, pp f (ps/2)]. When si is selected to represent ~mi = 1, si

should fall into (pp f (1 − ps/2),+∞). Otherwise, si falls into
(pp f (ps/2), pp f (1− ps/2)]. This implies that si should follow
the conditional distribution:

p
�
si | ~mi = 0

�
=

(
2pd f (s)

ps
if si ∈

�
−∞, pp f

� ps
2

��
0 otherwise

(21)

p (si |⊥) =

(
pd f (s)
1−ps

if si ∈
�
pp f

� ps
2

�
, pp f

�
1 − ps

2

��
0 otherwise

(22)

p
�
si | ~mi = 1

�
=

(
2pd f (s)

ps
if si ∈

�
pp f

�
1 − ps

2

�
,+∞

�
0 otherwise

(23)

where ⊥ denotes that s is not selected to carry message bits.
This sampling can be carried out by a rejection sampling

similar to that in [26] and [41]. The suggested sampling
algorithm is detailed in Algorithm 3. The distribution of s
can be computed as:

p(si) = p(si|~mi = 0)·p(si, ~mi = 0)+p(si|~mi =⊥)·p(si,⊥)
+ p(si|~mi = 1) · p(si, ~mi = 1) = pd f (si) (24)

That is, si follows the same distribution as that directly
sampled from N (0, 1). Therefore, the suggested sampling
method can effectively preserve the input distribution.

This noise S serves as the input to the Diffusion model.
Mathematically, the code-to-sampling mapping Γ3 can be
expressed as:

Γ3 : M ∈ {0, 1}nhb×nwb×nc+2nc
7→ S ∈ Rnhi×nwi×nci (25)

It can be observed that without the secret keys K(1) and
K(2), the receiver is incapable of recovering M. Furthermore,
Eq. (24) has proved that the generated S precisely mirrors
the input distribution employed within the specified Diffusion
model, thereby establishing Γ3 as a provably secure stegano-
graphic mechanism with exceptional undetectability.

During the extraction process, upon obtaining S ′ through
the inverse mapping of the Diffusion model, we select the
2×(nhb×nwb×nc+2nc ) elements from S ′ using the permutation
key K(2), denoted as S ′′. Then M′ can be estimated by applying
the inverse transformation and decryption processes, expressed
as:

m′i =

(
1, if s′′2i−1 × (1 − 2× k(1)

2i−1) > s′′2i × (1 − 2× k(1)
2i )

0, otherwise
(26)

Algorithm 3 Distribution Preserving Sampling
�
~M,K(2)

�

Fig. 4. Demonstrations of the recovered images obtained by different schemes.

IV. EXPERIMENTS

This section presents an experimental analysis, including
details of the experimental setup, comparisons to baseline
methods, and ablation studies.

A. Experimental Setup

1) VQGAN: We choose FFHQ dataset [42], which includes
70, 000 high-quality faces, and resize them into 512 × 512
as the secret images set. We follow the setting of VQGAN
[31] to train the encoder EVQ, decoder DVQ, and codebook C
with 210 codewords, where the dimension of each codeword
is 256. That is, nc = 10 and nz = 256. The parameter n f in
Algorithm 1 for robust codebook generation is set to 8, a value
that has been found to yield good performance.
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Fig. 5. Demonstration of stego images generated by three generative-based schemes.

2) Diffusion Model: As a demonstration, we utilize text-to-
image Diffusion models, specifically selecting Stable Diffusion
V2 [37] provided by HuggingFace as the baseline. The size
of the generated images is 512 × 512, and the dimension of
the latent space is 64 × 64 × 4. That is, nH = nW = 512,
nhi = nwi = 64, and nci = 4.

During inference, we randomly select prompts from Stable-
Diffusion-Prompts [43], with a guidance scale of 7.5. We
sample 50 steps using DPMSolver [44]. Considering the
scenario that users only need to transmit the generated images
without using the corresponding prompts, we simply use an
empty prompt for inversion, with a scale of 1. We perform 50
steps of inversion using EDICT Inversion [35].

3) Baseline Methods: In our experiments, we focus on
high-capacity image steganography, selecting six state-of-the-
art baseline methods. These encompass modification-based
image hiding schemes, including HiNet [10], ISN [11], Cs-
FNNS [8], and RIIS [12], as well as generative-based image
hiding schemes including CRoSS [28] and DiffStega [29].
For the modification-based models, the cover image set is
generated using the aforementioned Diffusion model. The
secret image set consists of the same FFHQ dataset referenced
previously. The embedding capacity for all baselines is set at
24 bpp (bits per pixel), enabling one image to be hidden within
another of the same resolution, specifically 512× 512 pixels.

B. Visual Quality Comparison

We first compare the visual quality of stego images. Given
that modification-based schemes can attain a high level of
stego image quality, comparable to that of the covers, our focus
in the comparison is solely on stego images produced through
generative-based approaches.

Figure 5 exhibits several stego images created by differ-
ent generative-based schemes. It is evident that all these
schemes yield stego images of commendable visual quality.
To delve deeper, we employ various metrics for a quantitative

TABLE I
VISUAL COMPARISON OF STEGO IMAGES GENERATED BY DIFFERENT

GENERATIVE-BASED SCHEMES. THE BEST RESULTS ARE BOLD AND
THE SECOND-BEST RESULTS ARE UNDERLINED

assessment of these techniques. Specifically, we calculate
NIQE score [45] for the generated stego images, Fréchet
Inception Distance (FID) [46] between the set of stego images
and a set of images generated independently of secret images,
as well as CLIP score [47] between the generated image and
the given prompt. NIQE serves as a no-reference image quality
assessment method, evaluating the naturalness of an image
without a comparator. FID, on the other hand, compares the
distribution of features from two sets of images to gauge
the quality of the generated images. Herein we computed
FID score for each baseline model using respective sets
of 10, 000 images. Lower NIQE and FID scores indicate a
higher resemblance of the stego images to benign images. The
three generative-based models are rooted in the text-to-image
Diffusion model, prompting us to utilize CLIP score to assess
the alignment of the stego image with the intended text prompt.
A higher CLIP score underscores the superior consistency of
the proposed method with the customized target prompt.

The comparison results are summarized in Table I. It can
be observed that our scheme boasts the lowest NIQE and FID
scores, confirming that the quality of the generated images
remains unaffected by the secret-driven process. Moreover,
our scheme attains the highest CLIP scores, highlighting its
impressive customization capabilities. To further validate our

Authorized licensed use limited to: Jinan University. Downloaded on July 11,2025 at 18:06:31 UTC from IEEE Xplore.  Restrictions apply. 



5960 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Fig. 6. Comparison of undetectability among different baseline schemes using (a) StegExpose, (b) SRNet, and (c) XuNet.

TABLE II
PSNR/SSIM RESULTS OF ALL THE BASELINE SCHEMES UNDER DIFFERENT DEGRADATIONS, INCLUDING GAUSSIAN NOISE AND JPEG COMPRESSION.

THE BEST RESULTS ARE BOLD AND THE SECOND-BEST RESULTS ARE UNDERLINED

findings, we calculated these scores using the native Stable
Diffusion V2 model. Two sets of images, both uninfluenced
by secret images, were generated by this model and used
to compute the aforementioned metrics. The results, also
presented in Table I, reveal that our proposed method performs
on a par with the native Stable Diffusion V2. In conclusion,
the proposed method exhibits performance nearly identical to
that of public image synthesis techniques.

We further evaluate the visual quality of the recovered
images. Figure 7 presents a visual comparison of all baseline
schemes. All schemes manage to restore the overall content
of the secret images. However, a closer inspection reveals
discernible differences in image details. Specifically, the recov-
ery quality of the generative-based schemes in the last three
columns falls short compared to that of the modification-
based schemes in the first four columns. To quantify this
disparity, we utilize Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) metrics [48], with the results
tabulated in the “Clean” column of Table II. These met-
rics further confirm that the generative-based schemes lag
behind the modification-based ones. This disparity could be
attributed to the inherent capacity advantage enjoyed by the
modification-based schemes, which do not have to grapple
with the undetectability demands, thereby affording more
space for concealing secret images. Nevertheless, it is worth
noting that our scheme still leads among the 3 generative-based
approaches.

C. Undetectability Comparison

Undetectability is critical for steganography applications.
It is paramount that the observer remains oblivious to the
presence of hidden information within the transmitted images.

TABLE III
FID SCORES BETWEEN SECRET AND STEGO IMAGE SETS OBTAINED BY

DIFFERENT GENERATIVE-BASED MODELS.
THE BEST RESULTS ARE BOLD

The two generative-based schemes, CRoSS and DiffStega,
achieve steganography by substituting a key object in the
secret image with another, excelling in local modifications but
struggling with global alterations. Consequently, as illustrated
in Figure 5, these schemes may inadvertently retain significant
overlap between the content of the secret and stego images,
compromising confidentiality. Additionally, an observer who
is privy to some content of the secret images could potentially
distinguish between stego and innocent images.

In contrast, our proposed scheme transcends the limitations
imposed by the content of the secret images. It grants users
the liberty to specify the content of the generated stego images
through customizable prompts. As evident in Figure 5, our
scheme ensures independence between the secret and stego
images. Furthermore, when we calculated the FID scores
between the secret and stego image sets for three generative-
based schemes, our scheme exhibited significantly higher
scores, as listed in Table III, indicative of greater diversity
between the secret and stego images. This implies the superior
undetectability and confidentiality offered by our scheme.

We then adopt three popular image steganalytic tools,
including StegExpose [15], SRNet [17], and XuNet [16], to
quantitatively evaluate the undetectability of these baseline

Authorized licensed use limited to: Jinan University. Downloaded on July 11,2025 at 18:06:31 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ROBUST GENERATIVE STEGANOGRAPHY FOR IMAGE HIDING USING CONCATENATED MAPPINGS 5961

Fig. 7. Demonstration of robustness of different schemes under Gaussian noise with σ ∈ {0.035, 0.015} and JPEG compression with QF ∈ {30, 70}.

schemes. StegExpose is a well-established steganalytic tool
that incorporates various statistical methods such as RS anal-
ysis, Chi Square Attack, and so on. SRNet and XuNet, on
the other hand, represent the pinnacle of deep learning-based
steganalytic techniques. Cover/stego-image pairs are required
to train these steganalytic tools. Due to the lack of cover
images, we utilize images generated by the same Diffusion
model and prompts from the same library, but which are not
driven by secret images, as the cover images for the generative-
based schemes. For a thorough evaluation, we provide 2, 000
cover/stego-image pairs for each steganalytic tool and each
baseline scheme.

We use all the cover/stego image pairs for testing via
StegExpose. Figure 6 illustrates the receiver operating char-
acteristic (ROC) curves for different detection thresholds
in StegExpose. Ideally, a perfect steganographic method
would yield an ROC curve that mirrors the diagonal ref-
erence line, suggesting that steganalytic tools would be
reduced to random guessing. The proximity of the ROC
curves for the generative-based schemes to this ideal diag-
onal line is remarkable. This performance surpasses that
of modification-based approaches, indicating that generative-
based schemes offer greater resilience against detection by
StegExpose.

When it comes to SRNet and XuNet, we randomly split
the 2, 000 cover/stego-image pairs into two equal sets for
training and testing. By adhering to the settings outlined in
[16] and [17], we gradually increase the number of leaked
sample pairs for training and record the corresponding detec-
tion accuracy on the test set. The comparison results are
illustrated in Figs. 6 (b) and 6 (c). A consistent trend can
be observed that, as the number of training pairs increases,
the detection accuracies of all schemes improve. However, our
scheme maintained a detection accuracy hovering around 0.5,
suggesting that it remains largely undetectable even as the
steganalytic tools become more informed. This underscores
the superior undetectability of our proposed method.

D. Robustness Comparison

To evaluate the robustness of our scheme, we conduct exper-
iments under various distortions, including Gaussian noise and
JPEG compression. For all baseline schemes, we intentionally
degraded the stego images and attempted to retrieve the secret
images from these degraded versions. By computing the PSNR
and SSIM between the recovered images and the original
secret images, we are able to gauge the resilience of each
scheme against these specified distortions.
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Figure 7 provides a visual representation, showing the
original secret images alongside their corresponding recovered
versions after undergoing different levels of distortion. Our
scheme demonstrates remarkable fidelity in recovering the
content of the secret images, whereas the images recovered
from other baseline schemes exhibited notable distortions in
both color and content, or even failed to recover the secret
images.

Table II presents a quantitative analysis of the quality of
recovered images under various distortion scenarios. It is
evident that when stego images are subjected to attacks, the
modification-based schemes experience a significant decline
in fidelity metrics. In stark contrast, generative-based schemes
maintain relatively stable scores, showcasing their resilience.

The robustness demonstrated by CRoSS and DiffStega,
despite the absence of specialized robustness designs, is
intriguing. This phenomenon can be ascribed to the inherent
stability of the Diffusion model. Furthermore, the approach of
modifying only a fraction of the secret images while leaving
the remainder unchanged enhances their robustness. Among
the generative-based schemes, our proposed method emerges
as the superior performer, thereby validating the efficacy of
our robustness mechanism.

E. Evaluation of the Sensitivity of Encryption Keys

The proposed scheme employs two encryption keys, K(1)

and K(2), to protect confidentiality against potential unau-
thorized access. To assess the sensitivity of the encryption
algorithms to these keys, we simulate a scenario where an
attacker can obtain parts of these keys.

Given an authentic key K(i), we disclose p% of its bits
through the following process. We create a binary mask M(i)

of the same length as the key. Within this mask, p% of the
entries are set to 1, indicating that the corresponding bits in
the key have been leaked, while the remaining entries are set
to 0. The attacker can then construct a similar key K(i)′ using
the equation:

K(i)′ = (K(i)M(i))|(∆¬M(i)) (27)

where ∆ represents a pseudorandom binary sequence of the
same length as K(i). The attacker subsequently attempts to
retrieve the secret image using K(i)′ .

In all instances where both K(1) and K(2) are leaked, we
progressively decrease the percentage of leaked key bits, p%,
from 100% to 96%. Figure 8 visually compares the recovered
images using keys with varying p% values. It is evident that,
with only 1% of the bits of both keys remaining unknown, the
recovered secret images exhibit considerable visual distortion,
making the content unrecognizable. Table IV outlines the
decline in PSNR scores of the recovered images as p%
decreases. It can be inferred that the proposed method offers
adequate confidentiality, as the PSNR scores of the recovered
images drop significantly below 10 when the percentage of
leaked bits for any key is below 100%.

F. Ablation Studies

To assess the effectiveness of the key components within
Γ1, Γ2, and Γ3, we conduct ablation experiments using

Fig. 8. Visual comparison of the recovered images using keys with varying
degrees of leakage.

TABLE IV

PSNR SCORES OF THE RECOVERED IMAGES USING CONSTRUCTED KEYS,
WHERE THE PERCENTAGE OF LEAKED BITS

RANGES FROM 100% TO 96%

six configurations of our scheme. Our focus is on three
crucial components: the robust codebook in Γ1, the check
code in Γ2, and the dual-sample in Γ3. The six configura-
tions encompass: the baseline devoid of the three mappings,
the inclusion of 1O only the robust codebook, 2O only the
check code, either 3O the dual-sample or 4O the triple-
sample, and finally, the integration of three components
1O 2O 3O.

Figure 9 offers a visual comparison between the original
secret images obtained through our scheme with various
configurations and their corresponding recovered versions
in the present of distortions. It becomes evident that the
incorporation of both components markedly diminishes the
distortion in the finer details of the recovered images. Table V
presents the PSNR scores of the recovered images obtained
using different configurations under various distortion lev-
els, along with the improvement values compared to the
baseline. Notably, the robust codebook in Γ1 contributes
marginally more than the check code in Γ2 and dual-sample
in Γ3. Additionally, we implemented a majority voting strat-
egy in the triple-sample approach. However, this approach
led to an increase in message errors due to the selection
of more coefficients with small amplitudes. The fusion of
the three components 1O 2O and 3O results in a substantial
enhancement in robustness, with this enhancement becoming
more evident as the distortion intensity increases. Conse-
quently, the integration of the robust codebook, the check
code, and the dual-sample is indispensable in our proposed
scheme.
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Fig. 9. Visual comparisons of the robustness obtained by the proposed scheme with different configurations.

TABLE V

PSNR SCORES OF THE RECOVERED IMAGES USING DIFFERENT CONFIGURATIONS. THE VALUE AFTER ’+’ OR ’-’ IN THE BOTTOM RIGHT CORNER
INDICATES THE IMPROVEMENT OR DECLINE COMPARED TO THE BASELINE

V. CONCLUSION
This paper introduces a generative steganography model

that satisfies four crucial properties: security, diversity, robust-
ness, and capacity. It is worth noting that the inherent
numerical instability and sensitivity to perturbations in most
generative models present significant obstacles to achieving
robustness. To address this issue, the proposed scheme inte-
grates three reversible mappings. In the first mapping, we
utilize the concept of perceptual image compression and
design a compression mapping based on VQGAN. Addi-
tionally, an order-preserving codebook generation algorithm
is introduced, which lays a solid foundation for achieving
robust image encoding. In the second mapping, to bolster
robustness against potential network errors, we append check
codes, thereby providing error correction capabilities. The
third mapping features a novel distribution-preserving noise
sampling module, which not only offers provable security but

also enhances robustness. Following these three mappings,
the secret image is transformed into an initial noise latent
that adheres to a standard Gaussian distribution. This latent
representation is then fed into the Stable Diffusion model
to generate a high-quality stego image. By utilizing EDICT
Inversion and the three reverse mappings, the secret image
can be recovered with high fidelity, even in the presence of
channel distortion. Furthermore, the proposed scheme provides
both provable steganographic security and perfect secrecy.
However, we acknowledge that achieving high capacity comes
at the expense of reduced recovered quality. This trade-off

motivates our future efforts to design improved compressive
mappings that can maintain both high capacity and superior
recovered quality.

While the vector-quantized codebook employed ensures
robustness against various attacks, it unfortunately imposes
constraints on the perceptual quality of the recovered
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images. To overcome this limitation, our future research
will delve into exploring robust latent representation that
possesses heightened generative capabilities. Moreover, the
present implementation is contingent upon Diffusion models,
which entails considerable computational overhead. Exploring
lightweight architectures represents another avenue for future
work.
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